

TABLE OF CONTENTS

WARRANTY 1
INTRODUCTION 2
COMMONLY ASKED QUESTIONS 2
CONTROL FEATURES 3
OVERALL CONTROL DIMENSIONS 3-4
SPEEDPOT MOUNTING DIMENSIONS 4
MOUNTING INSTRUCTIONS 4
WIRING PROCEDURE 4
TERMINAL STRIP WIRING - P1 5
TERMINAL STRIP WIRING - P2 5-6
SWITCH LADDER CIRCUIT DIAGRAMS 6
CONTROL PANEL IDENTIFICATION 6
INITIAL START-UP 7
TRIMPOT ADJUSTMENT PROCEDURE 7-8
TRIMPOT SETTING CHART 8
500 SERIES 3 HP MODEL 8
SHUNT WOUND MOTORS 8
"C" \& "RC" HOOK-UP DIAGRAMS 9
PILOT RELAY SWITCHING 9
"RE" HOOK-UP DIAGRAM 10
RELAY OPERATION - ENCLOSED VERSIONS 10
JUMPER WIRE SELECTION 11
CONTROL MODIFICATIONS 11
TWO SPEED OPERATION 11
DYNAMIC BRAKING 11
TACH FEEDBACK \& FOLLOWER 11
INHIBIT INSTRUCTIONS 11
-4/-5 OPTIONS 12
-6A / -6B / -7 / -11 / -15A OPTIONS 13
-36M / -38M OPTIONS 14-15
-51M / -52M OPTIONS 15
IN CASE OF DIFFICULTY 16
FUSING 16
BASIC MODEL SELECTION 16
SPECIFICATIONS 17
PARTS PLACEMENT \& LIST 18
SCHEMATIC 19
PRODUCT LINE BACK COVER

WARRANTY

Dart Controls, Inc. (DCI) warrants its products to be free from defects in material and workmanship. The exclusive remedy for this warranty is DCI factory replacement of any part or parts of such product which shall within 12 months after delivery to the purchaser be returned to DCl factory with all transportation charges prepaid and which DCI determines to its satisfaction to be defective. This warranty shall not extend to defects in assembly by other than DCl or to any article which has been repaired or altered by other than DCl or to any article which DCI determines has been subjected to improper use. DCl assumes no responsibility for the design characteristics of any unit or its operation in any circuit or assembly. This warranty is in lieu of all other warranties, express or implied; all other liabilities or obligations on the part of DCI , including consequential damages, are hereby expressly excluded.

NOTE: Carefully check the control for shipping damage. Report any damage to the carrier immediately. Do not attempt to operate the drive if visible damage is evident to either the circuit or to the electronic components.

All information contained in this manual is intended to be correct, however information and data in this manual are subject to change without notice. DCI makes no warranty of any kind with regard to this information or data. Further, DCI is not responsible for any omissions or errors or consequential damage caused by the user of the product. DCI reserves the right to make manufacturing changes which may not be included in this manual.

WARNING

Improper installation or operation of this control may cause injury to personnel or control failure. The control must be installed in accordance with local, state, and national safety codes. Make certain that the power supply is disconnected before attempting to service or remove any components!!! If the power disconnect point is out of sight, lock it in disconnected position and tag to prevent unexpected application of power. Only a qualified electrician or service personnel should perform any electrical troubleshooting or maintenance. At no time should circuit continuity be checked by shorting terminals with a screwdriver or other metal device.

INTRODUCTION

The 500 Series is a high performance, versatile DC motor control which provides a wide range of standard features, with many options that extend its capabilities. The 500 Series will operate $1 / 8$ through 1.0 horsepower at 120 VAC input, and $1 / 4$ through 2.0 horsepower at 240VAC input. A 3.0 horsepower model is available in 240VAC input, chassis mount only. Reference "Basic Model Selection" guide on page 16.

The 500 Series consists of three basic types:
$\mathbf{C}=$ Chassis mounted, no enclosure, no power relay.
RC = Chassis mounted, no enclosure, with power relay.
RE = Plastic enclosure with power relay - Nema 12 standard.
Note: The enclosed version (RE) is not available without the power relay.
The 500 Series is designed for Permanent Magnet, Shunt Wound, and some Universal Series (AC/DC) motors in the above horsepower ranges. The 500 Series chassis unit is recognized by the Component Program of Underwriters Laboratories, Inc., Standard 508, File E78180 (N). The 500 Series incorporates transient voltage protection with adjustable Current Limit and AC fuses for protection. Minimum and Maximum speeds are easily adjusted by trimpots, as is the I.R. Compensation. Acceleration and Deceleration are fully adjustable via individual trimpots.

COMMONLY ASKED QUESTIONS

Q. Can I run two or more motors from the same drive?
A. Not recommended. The I.R. Compensation (regulation) and Current Limit circuits would have difficulty sensing the different load on each motor.
Q. Can I change the horsepower of my motor and still use the same control?
A. Yes, provided you do not deviate outside the horsepower range for the voltage you are using. The trimpots would need readjustment; see "Trimpot Chart" (page 8) for approximate settings.
Q. Can I use the 500 Series as a Current Follower?
A. Yes, there is a field installable option shown on pages 12 and 13 to do this.
Q. Can I use the 500 Series on Tachometer feedback?
A. Yes, see +Tach (P2-9) under "Terminal Strip Wiring - P2" on page 6.
Q. Can I use the Stop (P2-11), Start (P2-13), and Common (P2-12) to stop-start the control on the "C" chassis version?
A. No. Terminals P2-11, P2-12, and P2-13 are only active on the relay versions; "RE" and "RC". These terminals are non-operative on the "C" version.
Q. Can the 500 Series be used as a Voltage or Tachometer Follower?
A. Yes. The voltage must be ungrounded and no more than +12 VDC (See "Terminal Strip Wiring" for proper hook-up). For ungrounded voltages greater than +12 volts, use the Scaling Pot diagram shown below. Note: Auto-Manual switch and speedpot can be removed if not needed.

Adjust scaling pot for a maximum of +12 V at full speed.

Q. How would I proceed to stop/start the 500 Series with my own relay?
A. You can use the contact of your relay in place of the AMP REF to REV 1 (P2-2 to P2-7) jumper wire. Since this is a low level signal (12 volts at 2 mA), you must use a logic type relay (preferably gold contacts). This cannot be done on controls using some options. Consult your Dart Representative if options are involved.
Q. Why is a jumper wire between AMP REF (P2-2) and REV 1 (P2-7) needed on drives with no options?
A. REV 1 (P2-7) and REV 2 (P2-8) are two identical stop inputs. One of these must be held low (to Amp Ref P2-2) for the control to run. If the drive has no options, this must be jumpered to satisfy the "OR" gate. This requirement is satisfied by some options. For these options, a connection must be made to these terminals. Instead of a jumper wire, the option is wired to these terminals. (See "Jumper Wires" on page 11).

CONTROL FEATURES

MIN SPEED- (Minimum speed) Allows adjustment of the motor speed when the speedpot is set at minimum. This permits the user to eliminate the "Deadband" on the main speed control, permitting zero calibration. Clockwise rotation of the "MIN" trimpot increases speed.
ACCEL - (Acceleration) Allows adjustment of the motor acceleration from a minimum of 0.2 seconds to a maximum of 10 seconds. The -15A option extends the maximum acceleration time to 30 seconds.

DECEL - (Deceleration) Allows adjustment of the motor deceleration from a minimum of 1 second to a maximum of 10 seconds. The -15A option extends the maximum deceleration time to 30 seconds.

MAX SPEED - (Maximum speed) Allows adjustment of the motor speed when the speedpot is set at maximum (CW). This permits the user to eliminate the "DEADBAND" of the speedpot, providing full speed at maximum rotation. Rotation of the "MAX" trimpot in the clockwise direction increases maximum motor speed. DO NOT SET MAX. ABOVE THE MAXIMUM OUTPUT RATING (90 V for 120 V input or 180 V for 240 V input).
I.R. COMP - (Speed Regulation) Allows adjustment of the circuitry that controls the speed regulation of the motor. This feature controls armature speed by changing the armature voltage to compensate for increased or decreased motor loading. Clockwise rotation of the "I.R. COMP" trimpot will increase compensation.

CUR. LIM. - (Current Limit) Provides protection from excessive armature current by limiting the maximum armature current the control can provide. This enables adjustment of the maximum torque the motor can deliver. Set Current Limit (CUR. LIM.) at 125\% of the rated motor current. Clockwise rotation of the "CUR. LIM." trimpot increases the torque (current) the control will provide.

TERMINAL STRIP P1 - Barrier type terminal strip provides for connection of AC lines, motor leads, motor field (if necessary), and earth ground.

TERMINAL STRIP P2 - Barrier type terminal strip provides for connection of speed potentiometer and any accessories and/or jumper wires which control the drive.

RELA \boldsymbol{Y} - (Power Interrupt Relay) Available only on the "RC" and "RE" versions, the relay permits the switching of $A C$ power with a low current signal. For the "RE" version, the relay will not allow start up after power failure without manually restarting.

OVERALL CONTROL DIMENSIONS

END VIEW

SPEEDPOT MOUNTING DIMENSIONS

(For "C" and "RC" versions)

"RE" SERIES HOUSING DIMENSIONS

END VIEW

CUSTOMER'S MOUNTING BRACKET

STM.
EXPLODED VIEW

DO NOT MOUNT CONTROL WHERE AMBIENT TEMPERATURE IS OUTSIDE RANGE OF -10° to $45^{\circ} \mathrm{C} .\left(15^{\circ}\right.$ to $115^{\circ} \mathrm{F}$.)

MOUNTING INSTRUCTIONS

1. Four $7 / 32$ " slots are provided for control mounting.
2. The 500 Series chassis can be used as a template.
3. Use standard hardware to mount.
4. For the "RE" version ONLY: Two 7/8" diameter holes are provided in one endplate to facilitate wiring. This allows for easy connection of $1 / 2^{\prime \prime}$ conduit.

NOTE: For enclosed models using 1 h.p. 90V or 2 h.p. 180 V motors, the control MUST be mounted vertically.

CAUTION:

DO NOT ATTEMPT TO PERFORM HI-POT TEST ACROSS AC LINES WITH THE CONTROL IN CIRCUIT. THIS WILL RESULT IN IMMEDIATE OR LONG TERM DAMAGE TO THE CONTROL.

WIRING PROCEDURE

1. Size all wires which carry armature or line current to handle currents AS SPECIFIED BY NATIONAL, STATE, AND/OR LOCAL CODES. All other wires may be \# 20AWG or smaller as permitted by local code.
2. Control wire (Pot, Tach, etc.) should be separated from all the Armature, Field (if Shunt Wound), and the AC wires when routed in conduits or in wire trays. The enclosed version has two holes on one endplate for this purpose. Conduit entry can be from top or bottom by interchanging the endplates.

TERMINAL STRIP WIRING - P1

CAUTION: BE SURE CONTROL HOUSING IS PROPERLY GROUNDED.

The 500 Series uses a 7 position barrier type terminal strip to handle the power connections.
P1-1 (EARTH GROUND) - Ground the control by connecting the ground wire to this terminal. NOTE: Terminals P1-5 (-ARM) and P2-2 (AMP REF) are electrically the same, which is the common reference point (low voltage common) for the control logic. The EARTH GROUND terminal (P1-1) is electrically different from common. If connected together, either at the amplifier or in any other fashion, fatal or hazardous operation may occur and permanent damage to the control WILL result!

P1-2 (AC1) 120VAC - Connect incoming hot AC (black wire) to this terminal. NOTE: This is fused (F1) on the control.
(AC1) 240VAC - Connect either hot side.
P1-3 (AC2) 120VAC - Connect the neutral AC (white wire) to this terminal. NOTE: This is fused (F2) on the control. (AC2) 240VAC - Connect either hot side.

P1-4 (+ ARMATURE) - Connects to the plus (+) Armature wire on the motor. 0-90VDC for 120VAC input or 0-180VDC for 240 VAC input. See "SPECIFICATIONS" for output rating.

CAUTION: ARMATURE CONNECTION MUST NOT BE SWITCHED OR BROKEN WHILE CONTROL IS ON SERIOUS DAMAGE TO THE CONTROL MAY RESULT.

P1-5 (- ARMATURE) - Connects to minus (-) Armature wire on the motor.
P1-6 (- FIELD) Connect minus (-) Field wire of the Shunt Wound motor (not used on PM motors).

FIELD VOLTAGE TABLE		
Model \#	VAC Input	VDC Field
510	120	100
$520 / 523$	240	200

P1-7 (+ FIELD) - DO NOT use for Permanent Magnet motor. This supplies + Field voltage for a Shunt Wound motor. See table shown above for dual voltage Field Wound motors. This output is rated at 1 Amp maximum. For motors with dual voltage field (ie. $50 / 100 \mathrm{~V}$ or $100 / 200 \mathrm{~V}$), make sure the highest value is connected.

TERMINAL STRIP WIRING - P2

The 500 Series uses a 13 position barrier type terminal strip for control connections.

CAUTION: NONE OF THE P2 TERMINALS SHOULD BE EARTH GROUNDED!

P2-1 (OVER CURRENT OUT) - Can be used to signal that the control is in current limit. It can also signal other devices or alarms. This is a low level logic signal which goes "high" when the current limit amplifier is in current limit. The logic of this control is +12 volts, while the output at this terminal is approximately 3 volts through a 1000ý resistor.

P2-2 (AMP REF) - This is the common point of the logic. It is used as common with OVER CURRENT OUT (P2-1), +TACH (P29), REV 1 (P2-7), REV 2 (P2-8), and WIPER (P2-4). NOTE: Never connect this terminal to earth ground !! Serious damage and injury may result !! This terminal is electrically the same point as -ARM (P1-5).

P2-3 (SPEEDPOT LO) - Connects to the low side (orange wire) of the 5K Speedpot (normally the CCW end). This input is raised and lowered by the MIN trimpot. Electronic speed input voltage (voltage follower) may be referenced to Speedpot LO if the MIN trimpot adjustments are to be active. Otherwise, inputs may be referenced to AMP REF (P2-2), which will bypass the MIN trimpot. INPUT MUST NOT BE GROUNDED !

> CAUTION FOR VOLTAGE FOLLOWER APPLICATIONS:
> THE INPUT CONNECTION TO THE SPEEDPOT MUST NOT BE GROUNDED !! SERIOUS DAMAGE TO THE CONTROL MAY RESULT FROM A GROUNDED INPUT.

P2-4 (SPEEDPOT WIPER) - Connects to the wiper (red wire) of the Speedpot (center lead). Use this input for the plus (+) side of voltage follower operation or tach follower. The minus (-) side connects to AMP REF (P2-2). INPUT MUST NOT BE GREATER THAN +12V MAXIMUM AND MUST NOT BE GROUNDED !

P2-5 (SPEEDPOT HI) - Connects to high side (white wire) of the Speedpot (CW end). This is internal +12 volts. INPUT MUST NOT BE GROUNDED !

P2-6 (SPARE) This terminal is not connected to the control circuit. It can be used as a terminal for field modifications.

P2-7 (REV 1) - REV 1 and REV 2 are identical quick stop inputs. One of them must be held low (to AMP REF) before the control will operate. The two are diode separated to form an "OR" gate. Since -ARM (P1-5) is also low in the system, these two inputs can be wired to the motor side of a reversing switch or relay. During the period of switching, neither input will be low, which will instantly return the set speed to zero and reset the acceleration ramp.

P2-8 (REV 2) - Identical to REV 1 (P2-7).
P2-9 (+TACH) Connect + Tach from a DC tachometer for tachometer feedback. The minus (-) lead from the tachometer goes to AMP REF (P2-2). Output voltage from the tachometer at full speed can range from 6 to 50 volts. The scale is corrected using the MAX speed trimpot. A 7 volt per 1000 RPM tachometer should be used.

P2-10 (PILOT LIGHT) - Full AC voltage is available for a pilot light. Current is limited through a $270 y$ ý 2 Watt resistor. Connect the other side of the pilot light to COMMON (P2-12).

P2-11 (STOP) Install one or more normally closed stop switches (in series) between STOP (P2-11) and COMMON (P2-12). Not active on "C" version.

P2-12 (COMMON) - Mid point of Start-Stop switches. Not active on "C" version.
P2-13 (START) Install one or more normally open start switches (in parallel) between START (P2-13) and COMMON (P2-12). Not active on "C" version.

SWITCH LADDER CIRCUIT DIAGRAMS

Warning: This diagram is for ÒRCÓ and ÒREÓ versi ONLY! DO NOT use on OCO version.

CONTROL PANEL IDENTIFICATION

POWER ON INDICATOR
HIDDEN LED INDICATOR LAMP

SPEED POTENTIOMETER
5000Ω 2W SPEEDPOT
CONTROLS MOTOR SPEED

INITIAL START UP

1. Recheck all wiring. Accidental grounds, loose or pinched wires on armature or speed potentiometer wires will damage the control when power is applied.
2. Check to see that incoming service is of correct voltage.
3. See "ADJUSTMENT PROCEDURE" and observe the WARNINGS pertaining to cover removal for adjustments.
4. Preset trimpots for your horsepower by using the "TRIMPOT CHART". NOTE: Options may change the trimpot setting from this chart. If your control has an option, be sure to carefully read the section in "OPTIONS" that pertains to your option.
5. Turn speed potentiometer to zero (fully CCW).
6. Turn power on and advance speedpot while observing motor.
7. If motor rotation is incorrect, turn power off at external disconnect and reverse the +ARM and -ARM connections.
8. If operation is satisfactory, no re-adjustments are needed.
9. If instability or surging is observed, or if maximum speed is higher than desired, proceed to "ADJUSTMENT PROCEDURE".
10. For other problems, consult page 16, "IN CASE OF DIFFICULTY".

ADJUSTMENT PROCEDURE

Four adjustments (MIN., MAX., I.R. COMP., and CUR. LIM.) are checked the factory using a typical motor. Use the "TRIMPOT CHART" to adjust the trimpots to the approximate setting for your horsepower. The other two adjustments (ACCEL and DECEL), are the Acceleration and Deceleration adjustments and should be set for your particular application requirements. The "TRIMPOT CHART" is approximate and is valid when using a speedpot or a 0 to 12 VDC input signal to control the speed. Operation of the control beyond $\pm 10 \%$ of normal line voltage is not recommended and could result in readjustments. These settings are permanent; periodic readjustment is normally not needed. (NOTE: Use only an ungrounded voltmeter).

MAX. Sets maximum motor speed when speedpot is at 100% CW rotation. Clockwise rotation increases maximum motor speed.

1) Turn drive power OFF!
2) Connect a DC voltmeter; plus to +ARM and minus to -ARM.
3) Set meter voltage range to either 90 VDC or 180 VDC.
4) With no load on the motor, adjust the MAX trimpot to the rated armature voltage as seen on the meter.

NOTE: A tachometer or strobe may be used in place of a meter. Follow the above steps, but adjust the MAX trimpot to the rated motor base speed, indicated by tach or strobe.

MIN. Sets minimum motor speed when Speedpot is set at zero. Clockwise rotation of the MIN. trimpot will increase the minimum motor speed.

1) Set Speedpot to zero (fully CCW).
2) With no load on the motor, adjust the MIN trimpot clockwise until the motor starts to rotate.
3) Slowly back off the trimpot in the CCW direction until the motor stops.

NOTE: If motor rotation is desired at zero Speedpot setting, adjust the MIN trimpot clockwise until the desired minimum speed is reached.
I.R. COMP. Provides a means of improving speed regulation in the armature feedback mode. If a change in motor speed during a load change is of no concern, rotate this trimpot fully CCW.

1) Set speedpot at 50%.
2) Observe motor speed during a no load condition.
3) Apply a full load to the motor.
4) Adjust the I.R. COMP. trimpot clockwise (while the load is applied) until the no load motor speed is maintained.

CUR. LIM. Limits DC motor armature current (torque) to prevent damage to the motor or control. The current limit is set for 125% of the rated motor current. Clockwise rotation of this trimpot increases the armature current (or torque produced).

1) Turn drive power OFF!
2) Connect a DC Ammeter in series with the +ARM line (between +A on motor and +ARM on the control). Preset the current limit trimpot CCW.
3) Turn power on and set speedpot to 50%.
4) Increase the motor load until the motor stalls (zero RPM).
5) Set CUR. LIM. trimpot to 125% of the rated motor armature current (see "TRIMPOT CHART").

ACCEL Allows adjustment of acceleration by user.

1) Clockwise trimpot rotation increases acceleration time.

Allows adjustment of deceleration by user.

1) Clockwise trimpot rotation increases deceleration time.

TRIMPOT SETTING CHART

510-12 thru 100 ($1 / 8$ thru 1.0 HP) One control with multiple settings. $\quad 520-25$ thru 200 ($1 / 4$ thru 2.0 HP) One control with multiple settings.

500 SERIES 3 H.P. (523-300C)

The 523-300C for three horsepower applications has the following restrictions:
$\square \quad$ Available in Chassis mount only.
$\square \quad$ Available in 240VAC input only.
$\square \quad$ Relay, start-stop, reversing, dynamic braking \& jogging are not available from factory (they are customer supplied and wired).
$\square \quad$ The isolation boards (-5 and -7 options) are available. The current limit shutdown (-6 option) is factory installed, however the customer must supply relay contactor.
\square The "TRIMPOT CHART" cannot be used for setting the 523-300C control, see the "ADJUSTMENT PROCEDURE".

SHUNT WOUND MOTORS for the 500 SERIES

To prevent control failure (due to the combined in-rush current to the field and armature), we suggest the Acceleration trimpot be set so there is at least a 2 to 3 second acceleration time when using shunt wound motors.

BASIC HOOK-UP DIAGRAMS WITHOUT OPTIONS

(If options are included on your control, see the option section of this manual).

"RC" VERSION

PILOT RELAY SWITCHING

(Customer supplied wiring for "RC" version)

After loss of incoming AC power, unit will not restart until start switch is closed.

Unit will self-start when switch is closed.

A jumper wire may be used in place of the SPST switch. If wired with a jumper, the control will always be on whenever AC input voltage is applied.

RELAY OPERATION - ENCLOSED VERSIONS

TO START: AC power is applied to AC1 and AC2. When the switch is flipped to start, the contact between P2-13 and P2-12 closes momentarily. The full AC voltage is applied across the relay coil (K1) causing the relay contacts K1-1 and K1-2 to close. The switch returns to open and the relay coil remains energized through the following path: AC1 through K1-2 (closed contact); then through L1 and Fuse 2; then through R44 (current limit resistor), stop contacts, through K1 to AC2.

TO STOP: The switch is flipped to stop, which OPENS the stop contact between P2-12 and P2-11. This stops current to the coil which de-energizes the coil causing K1-1 and K1-2 contacts to open, disconnecting the AC power. NOTE: THE CONTROL RECEIVES POWER FROM POINTS A \& B.

JUMPER WIRE SELECTION

NOTE: Jumper wires may be required on terminal strip P2 for the control to operate (refer to jumper chart below).
As explained in the "COMMONLY ASKED QUESTIONS" section, REV 1 (P2-7) and REV 2 (P2-8) are both stop inputs. One of these inputs must be held low to AMP REF (P2-2) for the control to operate. Jumpering is necessary between AMP REF and REV 1 or REV 2 to satisfy the "OR" gate. An option board may be installed on the control satisfying the "OR" gate. This jumper (between P22 and P2-7) is called JU2. At times JU2 may be replaced by a SPST switch.

CONTROL MODIFICATIONS

TACHOMETER FEEDBACK
Improves speed regulation to $\pm 1 / 2 \%$ of base speed.

TACHOMETER FOLLOWER

Allows control output to follow tachometer voltage.

NOTE: NEED 1\% OR LESS - TACH OUTPUT RIPPLE

INHIBIT (USED INDEPENDENTLY)

The customer supplied SPST switch is connected in series between the speedpot HI (P2-5) and the +TACH pin (P2-9). To inhibit, speedpot HI is closed to the +TACH pin. To restart, the switch is returned to open.
NOTE: The control will stop and start fast.

INHIBIT (USED WITH SPEEDPOT)
The customer supplied SPDT switch is connected in series between the speedpot $\mathrm{HI}(\mathrm{P} 2-5)$ and the + TACH pin (P2-9). To inhibit, speedpot HI is closed to the +TACH pin. To restart, the switch is returned to the run position. NOTE: The control will stop fast and soft start through the acceleration setting.

NOTE: Permits starting and stopping of motor without breaking AC lines. In the event of SCR failure or false triggering, the Inhibit circuit will not stop motor.

OPTIONS

NOTE: All options are specified by a suffix to the model number. This suffix starts with a dash (-). The more popular options are described on the following pages. When a combination of two or more of these options are used, the wiring procedure is beyond the scope of this manual. Please contact your Distributor or Representative.

-4 Option

See below for installation and availability
Jog
This option is factory installed on the "RE" version only. "S2" is located on the cover and disables the latch circuit of the power relay, allowing the power switch to jog the drive. The " C " and "RC" versions use customer supplied switch and wiring, in addition the "C" version uses a customer supplied relay.

-5 Option
 Signal Follower (Current)

Available on " C " and " $R C$ " models only Factory or Field installed (for Enclosed models use -7 Option)

Permits control to follow current signal as follows:

4 to 20 mA -5

The input can be grounded or ungrounded. The board sits on spacers screwed to terminals P2-3, P2-4, and P2-5. A current source is connected to the two position terminal strip on the option board. The maximum input impedance is 500ý. This option replaces the speedpot. The linearity trimpot is factory set and sealed (DO NOT ADJUST LINEARITY IN FIELD).
NOTE: Do not use MIN and MAX settings on the "TRIMPOT SETTING CHART" with this option.

The -6 option consists of a normally closed solid state switch that opens upon detection of the current limit set point. This option interrupts the latching circuit to the power relay. Upon clearing of the overload, this option must be turned "on" again to resume operation. The interrupt point is determined by the current limit setting.

NOTE: The -6 option requires factory modifications to the control.

-7 Option

Factory or Field installed Chassis unit Factory only on Enclosed models Signal Follower (Current) with Auto / Manual Switch

This option includes the appropriate -5 option board with pigtails. With the -7 option, control of the speed setting is switched by a SPDT switch between the speedpot (manual operation) and the - 7 option board (automatic operation). The current source is connected to P16-1 and P16-2 on the -7 option board terminal strip. This option board mounts on two spacers connected to terminals P2-3 and P2-5 (500 series PC board). The linearity adjustment is factory sealed - DO NOT ADJUST! To adjust the maximum motor speed in the manual mode, use the balance trimpot on the option board. It is adjusted so the maximum speed in the manual mode equals the maximum speed in the automatic mode. The MAX trimpot is used to set the maximum speed in the automatic mode. NOTE: DO NOT USE THE MIN \& MAX SETTINGS ON THE "TRIMPOT SETTING CHART" WITH THIS OPTION. THE SPDT SWITCHIS CUSTOMERPROVIDED FOR THE CHASSIS VERSIONS ("C" and "RC").

-11 Option
Ten Turn Speedpot

Field installed - ordered as separate item Available on "C" and "RC" models only

Provides for a finer control of speed. Installation is the same as the standard speedpot.

Option	AC Input	Installed	DBR Value	DBR location / placement
-36 M	120VAC	factory or field	$5 y ́ 30 \mathrm{~W}$	option board mounted
-36 MA	120VAC	factory only	$5 \dot{y} 50 \mathrm{~W}$	extrusion mounted
-38 M	240 VAC	factory or field	$10 y$ y 30 W	option board mounted
-38 MA	240 VAC	factory only	$10 \dot{y} 50 \mathrm{~W}$	extrusion mounted

-36M / -38M HOOK-UP USING SPDT SWITCH OR CONTACT

NOTE:
INPUTS TO TERMINAL STRIP P-5 CANNOT BE REFERENCED TO EARTH GROUND!

The -36M / -38M option automatically "brakes" to zero speed before reversing The SPDT center-off switch is used to select direction. When the direction is reversed, relays K1, K2, and K3 connect the dynamic brake resistor to the armature. The motor "brakes" and at zero speed the relays reverse the armature leads, causing the motor to rotate in the opposite direction. When the switch is in the center (STOP) position, the motor armature is connected to the dynamic brake resistor. This option may also be field installed if the application uses a remote command signal to operate.

Notes: The start-stop switch is customer provided on the "RC" version (see Hookup Diagrams for switch wiring, pages 9 and 10). The "RE" version requires a special cover that must be ordered for field installed -36 M or -38 M options. The Dynamic Brake Resistor is mounted accordingly per model (see above chart for placement).

IMPORTANT: DO NOT USE JU2 JUMPER WIRE with this option. WHEN RETROFITTING, JU2 MUST BE REMOVED (see "Hook-up Diagrams without Options" on pages 9 and 10).
-36M / -38M HOOK-UP FOR NPN OPEN COLLECTOR DIRECTIONAL CONTROL

-36M / -38M HOOK-UP FOR UNIDIRECTIONAL RUN / DYNAMIC BRAKE

-51M / -52M Option
Run / Dynamic Brake

Factory or Field installed - see chart below Available on "RE" version only

Option	AC Input	Installed	DBR Value	DBR location / placement
-51 M	120VAC	factory or field	5ý 30W	option board mounted
-51 MA	120VAC	factory only	$5 y ́ 50 \mathrm{~W}$	extrusion mounted -52M
240VAC	factory or field	10y 30W	option board mounted	
-52 MA	240VAC	factory only	10y 50 W	extrusion mounted

-51M / -52M HOOK-UP FOR RUN / DYNAMIC BRAKE

NOTE: INPUTS TO TERMINAL STRIP P-5 CANNOT BE REFERENCED TO EARTH GROUND!

The -51M / -52M option provides "Run Dynamic Brake" operation. The SPST switch is used to select run or brake mode. When the switch is open the motor is connected to the dynamic brake resistor (DBR). The motor will automatically stop before returning to the run mode. This operation uses the appropriate 36M / -38M option board wired for unidirectional operation.

Note: For wiring procedure on the "RC" version (see Hook-up Diagrams for switch wiring, pages 9 and 10). The "RE" version requires a special cover that must be ordered for field installed -51 M or -52 M options. The Dynamic Brake Resistor is mounted accordingly per model (see above chart for placement).
IMPORTANT: DO NOT USE JU2 JUMPER WIRE with this option. WHEN RETROFITTING, JU2 MUST BE REMOVED (see "Hook-up Diagrams without Options" on pages 9 and 10). For "RC" version units, order the -36M / 38M option.

MAINTENANCE PROCEDURE

In normal operation this control needs no routine maintenance. The cover may be cleaned with a mild detergent. Solvent type cleaners should not be used.

IN CASE OF DIFFICULTY

	POSSIBLE CAUSE(S)	CORRECTIVE ACTION(S)
Motor doesn't operate	Blown fuse	Replace fuse
	Incorrect or no power source	Install proper service
	Speedpot set at zero	Adjust speedpot CW to start
	Worn motor brushes	Replace motor brushes
	Improper or missing jumpers	See "Jumper Chart" page 11
Motor stalls or runs	Low voltage	Should be above 108V or 216V
very slowly with speed	Overload condition	Reduce load or re-adjust Current Limit
control turned fully CW	Weplace motor brushes	
	Max. speed set incorrectly	See "Adjustment Procedure" page 7-8
Motor hunts	Too much IR Comp	See "Adjustment Procedure" page 7-8
	Motor is in Current Limit	See "Adjustment Procedure" page 7-8
	Motor speed is above rated speed	Reduce Max trimpot setting
Repeated fuse blowing	Low voltage	Should be above 108V or 216V
	Overload condition	Reduce load
	Worn motor brushes	Relace motor brushes
	Defective motor bearings	Replace motor bearings
	Failed electrical components repair	
Motor runs but will not stop	Incorrect wiring	Check "Terminal Strip Wiring" sections
	Defective wiring	Check wiring
	Failed component	Return for repair

After using this section, if control will still not operate, consult your Dart Distributor or Representative or return unit for repair.

FUSING

The motor and control are protected against overloads by the current limit circuit. Additional protection is provided through 2 fuses, which are mounted on the main board. Use exact fuse replacements if the fuse requires changing. Before changing fuses, be sure the power to the control is disconnected at the power source. Note: Both sides of VAC input are fused.

HP: $1 / 8-2.0$ H.P.	FUSE SIZE: 10 Amp*	FUSE TYPE: Bussman ABC-10 or Little Fuse 314010
HP: 3.0 H.P.	FUSE SIZE: 20 Amp	FUSE TYPE: Bussman ABC-20 or Little Fuse 314020

* Fuse size for 2 horsepower motors may need to be increased to 12-15 amps.

BASIC MODEL SELECTION

120 VAC INPUT	$0-90$ VDC OUTPUT	$\mathbf{1 0 0}$ VDC FIELD		
HP RANGE		CHASSIS	RELAY CHASSIS	RELAY ENCLOSED
$1 / 8-1 / 0$		$510-100 \mathrm{C}$	$510-100 \mathrm{RC}$	$510-100 \mathrm{RE}$
240 VAC INPUT	$\mathbf{0 - 1 8 0}$ VDC OUTPUT	$\mathbf{2 0 0}$ VDC FIELD		
HP RANGE		CHASSIS	RELAY	RELAY
$1 / 4-2.0$	$520-200 \mathrm{C}$	$520-200 R \mathrm{C}$	ENCLOSED	
3.0	$523-300 \mathrm{C}$	N / A	$520-200 R E$	

AC INPUT VOLTAGE ... $\pm 10 \%$ of rated line voltage ACCELERATION .. 0.24 to 10.0 seconds - adjustable
ALTITUDE Up to 7,500 feet above sea level
CONTROL OVERLOAD CAPACITY 200\% for 1 minute
CURRENT LIMIT TRIMPOT RANGE 1.0 to 13.8 Amps ($1 / 50$ to 2 H.P.) 5.0 to 22.0 Amps (3 H.P.)

DECELERATION TIME STANDARD DIMENSIONS \& WEIGHTS:

	WIDTH	LENGTH	DEPTH	WEIGHT	TYPE
ENGLISH	$6.70 "$	$9.00 "$	$2.00 "$	40 oz.	C
	$6.70 "$	$9.00 "$	$2.25^{\prime \prime}$	41 oz.	RC
	$6.70^{\prime \prime}$	$10.00 "$	$4.75^{\prime \prime}$	56 oz.	RE
METRIC	171 mm	229 mm	51 mm	1134 gm.	C
	171 mm	229 mm	57 mm	1162 gm.	RC
	171 mm	254 mm	121 mm	1422 gm.	RE

DRIVE SERVICE FACTOR
EFFICIENCY
85\% typical
ELECTRICAL SPECS. - TYPICAL CURRENT \& HORSEPOWER RANGES:

	120VAC INPUT / 0-90VDC OUTPUT		240VAC INPUT / 0-180VDC OUTPUT	
H.P.	MAX AC AMPS	MAX ARM AMPS	MAX AC AMPS	MAX ARM AMPS
1/8	1.80	1.40	----	------
1/6	2.60	2.10	------	----
1/4	3.50	2.70	1.80	1.40
1/3	4.40	3.40	2.20	1.70
1/2	6.50	5.00	3.30	2.50
3/4	9.30	7.20	4.80	3.70
1.0	13.20	10.20	6.50	5.00
1.5	--------	-------	9.70	7.50
2.0	-------	-------	12.90	9.90
3.0	--------	-------	22.00	15.00

FUSE PROTECTION
HUMIDITY
2 AC line fuses (page 16) 95% non-conductive
INPUT FREQUENCY 50 or 60 HertzMAXIMUM ARMATURE CURRENTMAXIMUM SPEED TRIMPOT RANGE
\qquad (2 H.P.); 15.0 ADC (3 H.P.)MINIMUM SPEED TRIMPOT RANGE
\qquad
\qquad 0 to 30% of maximum speed
PILOT LAMP ("RE" VERSION)
\qquad
\qquad Packaged full wave bridge
SHUNT FIELD VOLTAGE 100VDC for 120VAC in; 200VDC for 240VAC in (1Amp max.)
SPEED CONTROLVia 5Ký Potentiometer OR 0-10 VDC isolated signal
SPEED RANGE $\pm 1 \%$ of base speedSPEED REGULATION 6 V at base speedTACHOMETER FEEDBACK
\qquad

PARTS PLACEMENT \& LIST

NOTES:

FOR "C" VERSION, DELETE K1

* B512F BRIDGE = D9, D10, D11, Q3, Q4 (S.N. C94 \& EARLIER)
* L512F-Y131 BRIDGE = D9, D10, D11, Q3, Q4 (S.N. D94 \& LATER)
U.L. VERSION = R30, C10 MOUNTED ON P1-4, P1-5 TERMINALS

523-300C CHANGES: R1 = 15K 6W, R6 = 10K, R23 = 220K, R29 = SENSE WIRE,
(Q3,Q4,D9,D10,D11) $=$ T612F, C12 $=$.22uf 400V, OMIT R5, C13
520 SERIES CHANGES: R1 $=25 \mathrm{~K} 6 \mathrm{~W}, \mathrm{R} 19=91 \mathrm{~K}$, R22 $=220 \mathrm{~K}$, OMIT C13
"RE" VERSION: SEE "WIRING INSTRUCTIONS"
-15A OPTION CHANGES: R36 $=180 \mathrm{~K}$
ALL RESISTORS 1/4W UNLESS NOTED OTHERWISE
** REMOTE MOUNTED SPEEDPOT ON "C" AND "RC" VERSIONS

MISCELLANEOUS

F1 REFER TO ÒFUSINGÓ F2 REFER TO OFUSINGO K1 S87R11A2B1D1 RELAY L1 NOISE SUPPRESSOR PCB A-4-0238B PC BOARD P1 7 POS. TERMINAL STRIP P2 13 POS. TERMINAL STRIP P3 1/4" MALE SPADE PIN T1 PULSE TRANSFORMER

NOTES:

NOTES:

NOTES:

