Instruction Manual
Low Voltage DC Brushless Control
TABLE OF CONTENTS

WARRANTY 1
INTRODUCTION 2
CONTROL FEATURES 2
700B SERIES DIMENSION DIAGRAM 2
MOUNTING INSTRUCTIONS ... 3
MODEL SELECTION 3
BRUSHLESS MOTORS & FUSING 3
SENSOR SPACING & INPUT VOLTAGE SELECTION ... 3
SPEED COMMAND SELECTION 3
MOTOR DIRECTION SELECTION 4
HOOK-UP DIAGRAM (figure 1 and figure 2) 4
HOOK-UP PROCEDURE FOR MOTORS WITH TIMING DIAGRAMS .. 5
HOOK-UP PROCEDURE FOR MOTORS WITHOUT TIMING DIAGRAMS ... 5
OPEN LOOP (700BDC) TRIMPOT ADJUSTMENT .. . 6
CLOSED LOOP (701BDC) TRIMPOT ADJUSTMENT .. 6
HEATSINK & COOLING 7
REVERSING 7
SPECIFICATIONS 7
TIMING DIAGRAM FOR 60° MOTOR (figure 3) ... 8
TIMING DIAGRAM FOR 120° MOTOR (figure 4) ... 9
REPAIR PROCEDURE & PRODUCT LINE .. BACK COVER

WARRANTY

Dart Controls, Inc. (DCI) warrants its products to be free from defects in material and workmanship. The exclusive remedy for this warranty is DCI factory replacement of any part or parts of such product which shall within 12 months after delivery to the purchaser be returned to DCI factory with all transportation charges prepaid and which DCI determines to its satisfaction to be defective. This warranty shall not extend to defects in assembly by other than DCI or to any article which has been repaired or altered by other than DCI or to any article which DCI determines has been subjected to improper use. DCI assumes no responsibility for the design characteristics of any unit or its operation in any circuit or assembly. This warranty is in lieu of all other warranties, express or implied; all other liabilities or obligations on the part of DCI, including consequential damages, are hereby expressly excluded.

NOTE: Carefully check the control for shipping damage. Report any damage to the carrier immediately. Do not attempt to operate the drive if visible damage is evident to either the circuit or to the electronic components.

All information contained in this manual is intended to be correct, however information and data in this manual are subject to change without notice. DCI makes no warranty of any kind with regard to this information or data. Further, DCI is not responsible for any omissions or errors or consequential damage caused by the user of the product. DCI reserves the right to make manufacturing changes which may not be included in this manual.

WARNING

Improper installation or operation of this control may cause injury to personnel or control failure. The control must be installed in accordance with local, state, and national safety codes. Make certain that the power supply is disconnected before attempting to service or remove any components!!! If the power disconnect point is out of sight, lock it in disconnected position and tag to prevent unexpected application of power. Only a qualified electrician or service personnel should perform any electrical troubleshooting or maintenance. At no time should circuit continuity be checked by shorting terminals with a screwdriver or other metal device.
INTRODUCTION

Dart Controls 700B Series is a family of general purpose brushless motor controls. These controls commutate power into standard 3 phase brushless (BLDC) motors.

The series uses DC power sources of 11 to 14VDC or 18 to 40VDC, including batteries of 12, 24, and 36 volts, selectable via jumper. The 700B Series will supply up to 5 amperes of current to the motor. It is available in both open (700BDC) and closed (701BDC) loop versions, and can drive motors with sensor spacings of 60 or 120 degrees, selectable via jumper.

A 14 position terminal strip connects the control to the DC power source, the motor, the speedpot, and the forward/reverse control switch. The control's PC board carries the minimum speed, maximum speed, current limit, and gain trimpots as well as a means for selecting the input voltage and sensor spacing.

CONTROL FEATURES

- AVAILABLE IN OPEN LOOP (700BDC) AND CLOSED LOOP (701BDC) VERSIONS
- POWER MOSFET TRANSISTORS
- QUIET 15KHz “PULSE WIDTH MODULATED” SWITCHED FREQUENCY
- FORWARD/REVERSE DIRECTIONAL CONTROL
- 5KΩ SPEED POTENTIOMETER W/ DIAL, LEADS & KNOB FOR REMOTE MOUNTING
- ANODIZED CHASSIS
- INTERNAL +6.2 VOLT DC SUPPLY FOR MOTOR HALL EFFECT SENSORS

700B SERIES DIMENSION DIAGRAM
MOUNTING INSTRUCTIONS

1. Six 3/16" wide slots are provided for control mounting (see dimension diagram on page 2).
2. Control chassis can be used as a template.
3. Use standard hardware to mount.

Caution:
Do not mount where ambient temperature is outside range of -10° C (15° F) to 45° C (115° F).

MODEL SELECTION

<table>
<thead>
<tr>
<th>MODEL #</th>
<th>CONTROL TYPE</th>
<th>INPUT VOLTAGE</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>700BDC</td>
<td>OPEN LOOP</td>
<td>12VDC or 18-40VDC selectable via jumper</td>
<td>60° or 120° selectable via jumper</td>
</tr>
<tr>
<td>701BDC</td>
<td>CLOSED LOOP</td>
<td>12VDC or 18-40VDC selectable via jumper</td>
<td>60° or 120° selectable via jumper</td>
</tr>
</tbody>
</table>

BRUSHLESS MOTORS & FUSING

Brushless DC motors have eight (8) wires: three (3) phase lines to the motor, three (3) Hall sensor lines, and sensor power and common. Also BLDC motors come in two sensor configurations, 60 and 120 degrees.

Many BLDC motor manufacturers are familiar with the 700B Series, and supply specific hook-up information for the Dart control. Other manufacturers only supply timing diagrams, leaving it up to the installer to generate a hook-up procedure. Finally, some manufacturers may supply motors with no accompanying information. The last two situations will be discussed later. All BLDC motors, no matter what the hook-up status, are connected to the 700B Series control as shown in figure 1.

Notice how the power is connected to terminals P1-4 and P1-5 through an appropriate switch and fuse. Dart recommends the use of a normal blow 5 ampere 3AG fuse. The power should be off until the hook-up procedure is complete and you are ready to run.

SENSOR SPACING & INPUT VOLTAGE SELECTION

Normally the 700B Series control is shipped ready for 120 degree sensor spacing (P2-2 and P2-1 connected). However, if 60 degree sensor spacing is desired, use the supplied jumper to connect P2-2 to P2-3. Note figure 1, which shows the location of the selectable sensor spacing connector and attached jumper connector. Using this selectable jumper connector enables the control to drive motors with 60 or 120 degree sensor spacings.

The input voltage is also jumper selectable and is shipped with the standard setting of 24/36VDC input (P3-2 and P3-3 connected). If 12 volt input is desired, move the supplied jumper to connect P3-2 to P3-1. See figure 1 for location of the selectable input voltage connector and attached jumper connector.

SPEED COMMAND SELECTION

The 5Kohm speedpot is connected to terminals P1-12, P1-13, and P1-14. When the speedpot is turned fully CCW (counterclockwise), the wiper will move to a terminal on the speedpot called (continued)
“LO”. Connect the speedpot “LO” lead to terminal P1-14, the speedpot “WIPER” lead to P1-13, and the speedpot “HI” lead to P1-12. If you are not using a speed potentiometer to regulate speed, a 0 to 6.2V DC signal can be used. This is accomplished by connecting the DC source signal lead to terminal P1-13 (WIPER) and common lead to terminal P1-14 (LO).

NOTE: It is important that when power is first applied to the system, the speedpot is set fully CCW.

MOTOR DIRECTION SELECTION

Terminal P1-8 on the 700B Series is the forward/reverse control. Allowing terminal P1-8 to stand free will let the motor turn in a particular direction. Connecting terminal P1-8 to P1-6 will reverse the rotation direction (see REVERSING on page 7).

This completes a general hook-up for the 700B Series. The next task is to connect the motor to the control. We think it’s prudent that when first testing your motor a DC ammeter be placed in the DC power line. Zero to ten amperes is fine (an analog movement is preferable).

HOOK-UP DIAGRAM
Most manufacturers of BLDC motors send timing charts with their product. These diagrams describe the function of each motor line. They show sensor and phase line signals to the motor. Sensor diagrams are very helpful, but many times the relationship between phase and sensor diagrams can lead to confusion. Our procedure is to hook up the sensors according to their diagrams, then test for proper phase. Current limit will protect the control from miswired phases.

First determine the spacing of the motor Hall sensors. They will either be 60 or 120 degrees. Usually the motor manufacturer will tell you the spacing. If they don’t, compare the sensor diagram sent with the motor with those in Figure 3 or 4. Observe that a 60 degree spacing will at some position have all sensor lines at a logic high. With 120 degree spacing, all three sensors are never at the same logic level at the same time.

Once sensor spacing is determined, return to the section “SENSOR SPACING & INPUT VOLTAGE SELECTION”, and select correct phase and input voltage as stated in the procedure. With the control set up for the correct sensor spacing and input voltage (also see Fusing on page 3), return to Figure 1 or Figure 2 and connect the sensors to terminals P1-9 through P1-11. Notice that for the 60 degree spacing there is a specific sensor line that leads the sequence, followed by a line lagging by 60 degrees, and a third line lagging the second by 60 degrees. It is important that the middle line in the train be connected to terminal P1-10.

After the sensors are connected, attach the 5 volt supply line to terminal P1-7. The sensor common line is connected to terminal P1-6. Now proceed to attach the three phase lines and test for proper hook-up.

We recommend arbitrarily attaching the phase lines to terminals P1-1, P1-2, and P1-3. Choose a configuration, test it, then keep track on paper of what you did.

Now apply power to the control. Slowly turn the speedpot CW. Observe for erratic rotation or currents over 1 ampere. If any of these conditions occur, immediately return the speedpot fully CCW, and turn off the power. Try a new phase line configuration, apply power and test again. There are six (6) different combinations for hooking the three phase lines to the control. One of them will work. Rotation will be smooth and the DC current will lie well below 1 ampere. You have now found the correct hook-up for your motor.

If you have a BLDC motor with no timing diagram, it is possible, with a little patience, to sort out the various leads and operate it with the 700B Series control. Find a voltmeter that will read a 5 volt logic level.

First sort out the three phase leads from the sensors. Phase leads are usually a heavier gauge wire. Once you find the phase wires, check them by measuring the resistance between any two. The resistance should be low, a few ohms, and be the same across any two of the three leads.

The remaining five leads are the three sensors, sensor power, and common. To find the power and common, look for color and gauge differences. If all else fails, call the motor manufacturer. Once sensor power leads have been located, the remaining three leads will be the Hall sensors.

Now construct a timing diagram using the sensor lines. First, connect the motor to the control, but leave off the three phase leads. Don’t worry about sensor spacing at this time. Next connect
your voltmeter to any sensor lead. Reference the meter to terminal P1-6. Apply power and slowly rotate the motor shaft by hand. You should see the meter move from 0 to 5 volts as the Hall sensor switches. Check the other two sensors for switching.

Next observe each sensor against the other and draw a timing diagram. You can now hook up the motor with this new information using the procedure for motors with timing diagrams.

OPEN LOOP (700BDC) TRIMPOT ADJUSTMENTS

CURRENT LIMIT - Dart has factory set the Current Limit to 14 Amperes peak (5 Amp DC average). You should not have to change this setting. You can set the current limit to a lower value by turning the Current Limit trimpot CCW. If you wish to use Current Limit to set the maximum *peak* current, then you may do so by looking with an oscilloscope at the voltage across the 0.1ohm 5W power resistor. One volt across this resistor is equivalent to 10 Amperes current. If you wish to use Current Limit to set the maximum *average* current, then measure the average DC voltage drop across the 0.1ohm 5W power resistor and divide it by 0.1. This will give you your average DC current.

You can also monitor average motor current by placing a DC ammeter in series with the DC source, however this is only accurate when running full speed. The Current Limit trimpot is designed to be used for overload protection only. Do not use Current Limit trimpot to limit speed or torque.

Caution: Remember, keep the average current under 5 Amps, and make sure the motor is rotating. A stalled motor, after about 30 seconds, may overheat and cause extensive damage to the control and/or motor.

MINIMUM SPEED - Turn the speedpot to zero (fully CCW). Next turn the minimum trimpot CW until the motor begins to rotate. Slowly rotate the trimpot CCW until the motor stops. The control will now run with a zero deadband. If a nonzero minimum speed is desired, rotate the trimpot CW to the desired setting.

MAXIMUM SPEED - Turn the speedpot fully CW and adjust the Maximum adjust trimpot to the desired maximum output.

CLOSED LOOP (701BDC) TRIMPOT ADJUSTMENTS

1. Set Maximum speed trimpot (MAX) from fully CCW to 60% CW rotation.
2. Set Closed Loop Gain trimpot to the fully CW position.
3. Advance your speedpot to the fully CW position. The motor should now be rotating at its maximum speed*.
4. Slowly rotate the Closed Loop Gain trimpot CCW until the motor speed decreases slightly**, then rotate the trimpot back CW just enough to return the motor to full speed.
5. Refer to the Open Loop Trimpot section above for Minimum Speed (MIN) and Current Limit (CUR LIM) trimpot adjustments.
 * If your motor doesn't reach its maximum speed with the speedpot fully CW, rotate the MAX trimpot CW until it does. Proceed with step 4.
 ** If you rotate the Closed Loop Gain trimpot fully CCW and the motor speed doesn't decrease, rotate the MAX trimpot CCW just enough to make the speed decrease slightly. Then rotate the Closed Loop Gain trimpot CW just enough to return the motor to full speed.
HEATSINK & COOLING

We recommend not letting the heatsink temperature rise above 75° C. (167° F.). The control, as shipped from the factory, will normally handle 5 amps continuous current. If the ambient temperature increases above 25° C. (77° F.), you must add more heatsink or decrease the current to keep the sink temperature from exceeding 75° C. Finally, no matter what the heatsink temperature, never exceed 5 amperes.

REVERSING

You can reverse motor direction by connecting P1-8 to P1-6. Use either a jumper wire, switch, relay, or an open collector NPN transistor. MAKE SURE WHEN YOU REVERSE DIRECTION THE MOTOR IS STOPPED. THE CONTROL ISN'T DESIGNED FOR PLUG REVERSING.

Sometimes it may be necessary to reverse your motor without using terminal P1-8. This is done by stopping the motor and exchanging terminals P1-1 with P1-2 and terminals P1-10 with P1-11. This will work with either a 60 or 120 degree motor.

If your motor draws an excessive amount of current in reverse, you may have a motor designed for only one direction. Consult with the motor manufacturer about this problem.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT VOLTAGE (JUMPER SELECTABLE)</td>
<td>11 to 14VDC OR 18 to 40VDC</td>
</tr>
<tr>
<td>OUTPUT VOLTAGE</td>
<td>0 to INPUT VOLTAGE</td>
</tr>
<tr>
<td>MOTOR HALL SPACING - ELECTRICAL (JUMPER SELECTABLE)</td>
<td>60° OR 120°</td>
</tr>
<tr>
<td>LOAD CURRENT (CONTINUOUS)</td>
<td>5 AMPS</td>
</tr>
<tr>
<td>SPEED RANGE</td>
<td>50 : 1</td>
</tr>
<tr>
<td>MINIMUM SPEED TRIMPOT</td>
<td>ADJUSTABLE 0-30% OF MAX.</td>
</tr>
<tr>
<td>CURRENT LIMIT TRIMPOT</td>
<td>ADJUSTABLE</td>
</tr>
<tr>
<td>OPEN LOOP SPEED REGULATION</td>
<td>(MODEL 700BDC) NONE</td>
</tr>
<tr>
<td>INPUT / OUTPUT CONNECTIONS</td>
<td>14 POSITION TERMINAL BLOCK</td>
</tr>
<tr>
<td>SPEED COMMAND SIGNAL</td>
<td>5Kohm SPEED POTentiometer or 0 to +6.2V DC SIGNAL</td>
</tr>
<tr>
<td>OPERATING TEMPERATURE</td>
<td>0° C. to 45° C. (32° F. to 113° F.)</td>
</tr>
<tr>
<td>CLOSED LOOP SPEED REGULATION</td>
<td>(MODEL 701BDC) ± 1/2% OF BASE SPEED</td>
</tr>
<tr>
<td>MAXIMUM SPEED TRIMPOT</td>
<td>ADJUSTABLE 60 to 100% OF INPUT VOLTAGE</td>
</tr>
<tr>
<td>ACCELERATION</td>
<td>FAST START</td>
</tr>
<tr>
<td>INTERNAL VOLTAGE SUPPLY (FOR MOTOR HALL SPACINGS)</td>
<td>+6.2 VDC</td>
</tr>
</tbody>
</table>
TIMING DIAGRAM FOR 60° MOTOR

INPUT - 60° ELECTRICAL MOTOR

<table>
<thead>
<tr>
<th>SENSOR 3 (S3) TO TERMINAL P1-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR 2 (S2) TO TERMINAL P1-10</td>
</tr>
<tr>
<td>SENSOR 1 (S1) TO TERMINAL P1-9</td>
</tr>
</tbody>
</table>

OUTPUT - 60° ELECTRICAL MOTOR

| PHASE 3 (θ3) TO TERMINAL P1-1 |
| PHASE 2 (θ2) TO TERMINAL P1-3 |
| PHASE 1 (θ1) TO TERMINAL P1-2 |

Figure 3
TIMING DIAGRAM FOR 120° MOTOR

INPUT - 120° ELECTRICAL MOTOR

- SENSOR 1 (S1) TO TERMINAL P1-9
- SENSOR 2 (S2) TO TERMINAL P1-10
- SENSOR 3 (S3) TO TERMINAL P1-11

OUTPUT - 120° ELECTRICAL MOTOR

- PHASE 1 (θ1) TO TERMINAL P1-2
- PHASE 2 (θ2) TO TERMINAL P1-3
- PHASE 3 (θ3) TO TERMINAL P1-1

Figure 4
REPAIR PROCEDURE

In the event that a Product manufactured by Dart Controls Incorporated (DCI) is in need of repair service, it should be shipped, freight paid, to: Dart Controls, Inc., 5000 W. 106th Street, Zionsville, IN. 46077, ATTN: Repair Department.

Please include with each order a P.O. number to cover any repair charges (a P.O. is needed even on warranty returns to cover misuse or other failures that have voided warranty), and include a note with a brief description of the problem experienced. NO WORK WILL BE DONE ON ANY ORDER WITHOUT A P.O. NUMBER.

Completed repairs are returned with a Repair Report that states the problem with the control and the possible cause. Repair orders are returned via UPS Ground unless other arrangements are made. If you have further questions regarding repair procedures, contact your Dart Distributor or Representative.

YOUR MOTION SYSTEMS SOLUTION PROVIDER

Dart Controls, Inc. is a designer, manufacturer, and marketer of analog and digital electronic variable speed drives, controls, and accessories for AC, DC, and DC brushless motor applications.

Shown above is just a sampling of the expanded line of Dart controls that feature the latest in electronic technology and engineering. Products are manufactured in the U.S.A. at our Zionsville (Indianapolis, Indiana) production and headquarters facility - with over 2,000,000 variable speed units in the field.

In addition to the standard off-the-shelf products, you can select from a wide variety of options to customize controls for your specific application. For further information and application assistance, contact your local Dart sales representative, stocking distributor, or Dart Controls, Inc.

Dart Controls, Inc.

Manufacturer of high quality DC and AC motor speed controls and accessories since 1963.

P.O. Box 10
5000 W. 106th Street
Zionsville, Indiana 46077
Phone: (317) 733-2133
Fax: (317) 873-1105

www.dartcontrols.com
ISO9001 REGISTERED